专利摘要:
本發明係關於一種濺鍍靶材,其包含如下之燒結體,該燒結體含有In、Ga及Mg,含有選自In2O3所表示之化合物、In(GaMg)O4所表示之化合物、Ga2MgO4所表示之化合物、及In2MgO4所表示之化合物中之一種以上之化合物,原子比In/(In+Ga+Mg)=0.5以上、0.9999以下,且原子比(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下。
公开号:TW201307598A
申请号:TW101124527
申请日:2012-07-06
公开日:2013-02-16
发明作者:Kazuaki Ebata;Shigekazu Tomai;Kota Terai;Shigeo Matsuzaki;Koki Yano
申请人:Idemitsu Kosan Co;
IPC主号:H01L21-00
专利说明:
濺鍍靶材
本發明係關於一種濺鍍靶材、使用其之氧化物薄膜之製造方法、薄膜電晶體及顯示裝置。
近年來,顯示裝置之發展顯著,液晶顯示裝置或EL(electro luminescence,場致發光)顯示裝置等各種顯示裝置向電腦或文字處理機等OA(Office Automation,辦公自動化)設備之引入正活躍地進行。該等顯示裝置均具有利用透明導電膜夾持顯示元件之夾層構造。
作為驅動顯示裝置之開關元件,目前矽系半導體膜佔據主流。其原因在於:除了矽系薄膜之穩定性、加工性良好以外,開關速度亦良好。矽系薄膜通常藉由化學氣相沈積法(CVD,Chemical Vapor Deposition)而製造。
然而,非晶質之矽系薄膜於開關速度方面相對較慢,於顯示高速之動態圖像之情形時存在無法顯示圖像之缺點。另一方面,結晶質之矽系薄膜雖然開關速度相對較快,但結晶化需要800℃以上之高溫、或利用雷射之加熱,而於製造中需要極大之能量及步驟。
又,矽系薄膜雖然作為電壓元件亦優異,但存在其特性會根據電流隨時間經過而變化之問題。
為了解決此種問題,業界正研究使用包含氧化銦、氧化鋅及氧化鎵之氧化物半導體膜的薄膜電晶體。
一般而言,氧化物半導體薄膜係藉由使用包含氧化物燒結體之靶材(濺鍍靶材)的濺鍍而製造。
作為濺鍍靶材,已知有例如包含In2Ga2ZnO7或InGaZnO4所表示之顯示出同型晶體結構之化合物的靶材(專利文獻1~3)。為了提高燒結密度(相對密度),該靶材需要於氧化環境下進行燒結,但由此會導致靶材之電阻下降,因而需要於燒結後以高溫進行還原處理。
又,若長時間使用靶材,則存在如下問題:所獲得之膜之特性或成膜速度較大地變化,或發生由InGaZnO4或In2Ga2ZnO7之異常成長引起之異常放電,或成膜時微粒大量產生等。若頻繁發生異常放電,則有時電漿放電狀態變得不穩定,無法進行穩定之成膜,對膜特性產生不良影響。
專利文獻4中,作為含有氧化鎂之濺鍍靶材,揭示有包含氧化銦、氧化鋅、氧化鎂之靶材及透明導電膜。
然而,並未研究包含氧化銦、氧化鎵、氧化鎂之半導體薄膜製作用之濺鍍靶材,結球(nodule)與生成化合物之關係亦不明確。 先前技術文獻專利文獻
專利文獻1:日本專利特開平8-245220號公報
專利文獻2:日本專利特開2007-73312號公報
專利文獻3:國際公開第2009/084537號說明書
專利文獻4:日本專利特開2005-307269號公報
本發明之目的在於提供一種濺鍍靶材,其可抑制使用濺鍍法形成氧化物半導體膜時產生之異常放電,而穩定且再現性良好地獲得氧化物半導體膜。
根據本發明,可提供以下之濺鍍靶材等。
1.一種濺鍍靶材,其包含如下之燒結體:該燒結體含有In、Ga及Mg,含有選自In2O3所表示之化合物、In(GaMg)O4所表示之化合物、Ga2MgO4所表示之化合物、及In2MgO4所表示之化合物中之一種以上之化合物,原子比In/(In+Ga+Mg)=0.5以上、0.9999以下,且原子比(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下。
2.如1之濺鍍靶材,其中上述原子比滿足以下:In/(In+Ga+Mg)超過0.7且為0.9999以下,且(Ga+Mg)/(In+Ga+Mg)為0.0001以上且未達0.3。
3.如1或2之濺鍍靶材,其中上述燒結體之相對密度為90%以上。
4.如1至3中任一項之濺鍍靶材,其中上述燒結體進而含有正4價之金屬氧化物M。
5.如4之濺鍍靶材,其中上述金屬氧化物M為選自SnO2、TiO2、SiO2、ZrO2、GeO2、HfO2及CeO2中之一種以上之氧化物。
6.如5之濺鍍靶材,其滿足以下之原子比:[M]/[全部金屬]=0.0001~0.20(式中,[M]為燒結體中所含之正4價金屬之原子之合計,[全部金屬]為燒結體中所含之全部金屬之原子之合計)。
7.一種濺鍍靶材之製造方法,其係如1之濺鍍靶材之製造方法,包括:將平均粒徑為0.1~1.2 μm之氧化銦粉末、平均粒徑為0.1~1.2 μm之氧化鎵粉末、平均粒徑為0.1~1.2 μm之氧化鎂粉末以原子比In/(In+Ga+Mg)=0.5以上、0.9999以下,且原子比(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下混合、成形,將所獲得之成形體以升溫速度0.1~2℃/分鐘自800℃升溫至燒結溫度,並於上述燒結溫度下保持10~50小時而進行燒結;並且上述燒結溫度在1200℃~1650℃之範圍內。
8.一種氧化物薄膜之製造方法,其使用如1至6中任一項之濺鍍靶材並藉由濺鍍法而成膜。
9.如8之氧化物薄膜之製造方法,其係於使稀有氣體原子含有選自水分子、氧分子及一氧化二氮分子中之至少一種以上之分子而成之混合氣體之環境下進行藉由上述濺鍍法之成膜。
10.如9之氧化物薄膜之製造方法,其係於稀有氣體原子及至少含有水分子之混合氣體之環境下進行藉由上述濺鍍法之成膜。
11.如10之氧化物薄膜之製造方法,其中上述混合氣體中之水分子之含有比率以分壓比計為0.1%~25%。
12.一種薄膜電晶體,其以藉由如8至11中任一項之方法而成膜之氧化物薄膜作為通道層。
13.如12之薄膜電晶體,其中於上述通道層上具備至少含有SiNx之保護膜。
14.一種顯示裝置,其具備如12或13之薄膜電晶體。
根據本發明,可提供一種可抑制使用濺鍍法而形成氧化物半導體膜時產生之異常放電,而穩定且再現性良好地獲得氧化物半導體膜之濺鍍靶材。 I.燒結體及濺鍍靶材
本發明之濺鍍靶材含有燒結體,該燒結體含有In、Ga及Mg,且含有選自In2O3所表示之化合物、In(GaMg)O4所表示之化合物、Ga2MgO4所表示之化合物、及In2MgO4所表示之化合物中之一種以上之化合物。
又,上述燒結體滿足以下之原子比。
In/(In+Ga+Mg)=0.5以上、0.9999以下(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下。
藉由向燒結體中之In2O3中共摻雜與氧之結合力較強之Ga及Mg,可使薄膜中之載子濃度充分地降低。
由向In2O3中摻雜有Zn與Mg之燒結體所獲得之薄膜存在不使載子濃度充分降低之情況下發生導電體化之情形。
藉由含有選自In2O3所表示之化合物、In(GaMg)O4所表示之化合物、Ga2MgO4所表示之化合物、及In2MgO4所表示之化合物中之一種以上之化合物,且具有上述原子,本發明之濺鍍靶材可實現穩定之濺鍍。
上述燒結體可含有上述4種化合物之全部,亦可含有1、2或3種。較佳為含有In2O3。更佳為含有以下之化合物或化合物之組合。
‧In2O3
‧In2O3及In(GaMg)O4
‧In2O3及In2MgO4
‧In2O3及Ga2MgO4
‧In2O3、In(GaMg)O4及In2MgO4
‧In2O3、In(GaMg)O4及Ga2MgO4
又,上述燒結體較佳為不含Ga2O3及MgO。
燒結體中存在(殘留)Ga2O3或MgO之情形,有時會導致濺鍍時之異常放電或產生結球,於將燒結體成膜為濺鍍靶材之氧化物薄膜上產生缺陷。
若本發明中使用之燒結體之原子比為上述範圍外,則有濺鍍本發明之濺鍍靶材而成膜之氧化物薄膜成為導電體或絕緣膜而非半導體之虞。
具體而言,若In/(In+Ga+Mg)未達0.5,則有氧化物薄膜成為絕緣體而非半導體之情形。又,若In/(In+Ga+Mg)超過0.9999,則有氧化物薄膜成為導電膜之情形。
又,若(Ga+Mg)/(In+Ga+Mg)未達0.0001,則有氧化物薄膜成為導電膜之情形,若(Ga+Mg)/(In+Ga+Mg)超過0.5,則有氧化物薄膜成為絕緣體之情形。
又,若(Ga+Mg)/(In+Ga+Mg)超過0.5,則有Ga2O3或MgO等高電阻之氧化物析出至靶材中而導致產生結球之虞。
上述原子比較佳為In/(In+Ga+Mg)超過0.7且為0.9999以下,且(Ga+Mg)/(In+Ga+Mg)為0.0001以上且未達0.3,進而較佳為In/(In+Ga+Mg)超過0.8且為0.9999以下,且(Ga+Mg)/(In+Ga+Mg)為0.0001以上且未達0.2。
Ga與Mg之比率較佳為Mg/(Ga+Mg)=0.001~0.900,更佳為Mg/(Ga+Mg)=0.001~0.600。
本發明中使用之燒結體較佳為相對密度為90%以上。
若相對密度為90%以上,則可保持穩定之濺鍍狀態。若未達90%,則有靶材表面黑化,或發生異常放電之情形。相對密度較佳為95%以上,更佳為97%以上。
相對密度可藉由阿基米德法測定。相對密度較佳為100%以下。於超過100%之情形時,有於燒結體中產生金屬粒子,或生成低級氧化物之情形,而變得需要嚴密地調整成膜時之氧供給量。
又,亦可於燒結後進行還原性環境下之熱處理操作等後處理步驟等而調整密度。還原性環境係使用氬氣、氮氣、氫氣等之環境,或該等之混合氣體環境。
進而,較佳為使本發明中使用之燒結體中含有正4價之金屬氧化物M。藉由含有正4價之金屬氧化物,具有提高燒結體之燒結密度,降低燒結體之體電阻等效果。
又,正4價之金屬氧化物對酸之耐性較強,於為非晶質氧化物薄膜之情形時亦可賦予耐酸性。
正4價之金屬氧化物M較佳為選自SnO2、TiO2、SiO2、ZrO2、GeO2、HfO2及CeO2中之一種或兩種以上之氧化物。
較佳為[M]/[全部金屬]=0.0001~0.20。式中,[M]為燒結體中所含之正4價金屬之原子之合計,[全部金屬]為燒結體中所含之全部金屬之原子之合計。
若[M]/[全部金屬]未達0.0001,則有添加效果不足之情形,若超過0.20,則有成膜而獲得之氧化物半導體膜之遷移率降低之情形,故而欠佳。
[M]/[全部金屬]較佳為0.0005~0.15,更佳為0.001~0.1。
燒結體中所含之各元素之原子比可利用電感耦合電漿發光分析裝置(ICP-AES,inductively coupled plasma-atomic emission spectrometry)對含有元素進行定量分析而求得。
具體而言,若利用噴霧器使溶液試樣成為霧狀,並導入氬電漿(約6000~8000℃)中,則試樣中之元素吸收熱能量而獲得激發,軌道電子自基態向高能階之軌道遷移。該軌道電子以10-7~10-8秒左右遷移至更低能階之軌道。此時,以光之形式釋放能量之差而發光。該光顯示出元素固有之波長(光譜線),因此可藉由有無光譜線而確認元素之存在(定性分析)。
又,由於各光譜線之大小(發光強度)與試樣中之元素數成正比,故而藉由與已知濃度之標準溶液進行比較,可求出試樣濃度(定量分析)。
藉由定性分析鑑定所含有之元素後,藉由定量分析求出含量,並由其結果求出各元素之原子比。
本發明中使用之燒結體於不損害本發明之效果之範圍內,可含有上述之In、Ga、Mg及任意之正四價金屬以外之其他金屬元素,亦可實質上亦包含In、Ga、Mg及任意之正四價金屬。
本發明中「實質上」係指作為燒結體之效果由上述In、Ga、Mg及任意之正四價金屬產生,或燒結體之金屬元素之98重量%以上且100重量%以下(較佳為99重量%以上且100重量%以下)為In、Ga、Mg及任意之正四價金屬。
如上所述,燒結體中所含之金屬元素實質上包含In、Ga、Mg及任意之正四價金屬,於不損害本發明之效果之範圍內亦可含有其他不可避免之雜質。
理想的是本發明中使用之燒結體之密度較高,較佳為6.0 g/cm3以上,更佳為6.2 g/cm3以上,進而較佳為6.4 g/cm3以上,通常為7.1 g/cm3以下。
若密度低於6.0 g/cm3,則有發生由上述燒結體形成之濺鍍靶材之表面黑化等情況而引起異常放電,使濺鍍速度降低之虞。
理想的是本發明中使用之燒結體中之結晶之最大粒徑為5 μm以下。若結晶成長為粒徑超過5 μm,則有導致產生結球之虞。
於靶材表面因濺鍍而被削薄之情形時,該削薄速度根據結晶面之方向而有所不同,從而於靶材表面產生凹凸。該凹凸之大小取決於燒結體中存在之結晶粒徑。認為若為包含具有大結晶粒徑之燒結體之靶材,則該凹凸變大,自該凸起部分產生結球。
該等之濺鍍靶材之結晶之最大粒徑,於濺鍍靶材之形狀為圓形之情形時,圓之中心點(1個)與於該中心點正交之2條中心線上之中心點與周圍部之中間點(4個)之合計5處,對在100 μm見方之框內所觀察到之最大之粒子測定其最大粒徑,又,濺鍍靶材之形狀為四方形之情形時,於該中心點(1個)與四方形之對角線上之中心點與角部之中間點(4個)之合計5處,對在100 μm見方之框內所觀察到之最大之粒子測定其最大粒徑,以該等5個框內各自存在之最大粒子之粒徑之平均值表示。粒徑係測定結晶粒之長徑。結晶粒可利用掃描式電子顯微鏡(SEM,Scanning Electron Microscopy)進行觀察。
本發明之濺鍍靶材之製造方法包括以下之兩個步驟。
(1)將原料化合物混合、成形而製成成形體之步驟。
(2)燒結上述成形體之步驟。
以下,對各步驟進行說明。 (1)將原料化合物混合、成形而製成成形體之步驟
原料化合物並無特別限制,使用含有In、Ga及Mg且燒結體可具有以下原子比之化合物即可。
In/(In+Ga+Mg)=0.5以上、0.9999以下,且(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下。
例如可列舉氧化銦、金屬鎵及金屬鎂之組合,或氧化銦、氧化鎵及氧化鎂之組合等。再者,原料較佳為粉末。
原料較佳為氧化銦、氧化鎵及氧化鎂之混合粉末。
於原料使用單質金屬之情形時,例如使用氧化銦、金屬鎵及金屬鎂之組合作為原料粉末之情形時,有所獲得之燒結體中存在鎵或鎂之金屬粒,於成膜過程中靶材表面之金屬粒熔融而不自靶材釋出,導致所獲得之膜之組成與燒結體之組成有較大不同之情況。
原料粉末之平均粒徑較佳為0.1 μm~1.2 μm,更佳為0.1 μm~1.0 μm以下。原料粉末之平均粒徑可利用雷射繞射式粒度分佈裝置等測定。
例如以平均粒徑為0.1 μm~1.2 μm之In2O3粉末、平均粒徑為0.1 μm~1.2 μm之Ga2O3粉末、及平均粒徑為0.1 μm~1.2 μm之MgO粉末作為原料粉末,以原子比成為In/(In+Ga+Mg)=0.5以上、0.9999以下,且(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下,較佳為In/(In+Ga+Mg)=超過0.7且為0.9999以下,且(Ga+Mg)/(In+Ga+Mg)=0.0001以上、未達0.3之比率調合該等粉末。
步驟(1)之混合、成形方法並無特別限定,可使用公知之方法進行。例如向含有氧化銦粉、氧化鎵粉及氧化鎂粉之混合粉的原料粉末中調配水系溶劑,將所獲得之漿料混合12小時以上之後,進行固液分離、乾燥、造粒,繼而將該造粒物放入模框中成形。
關於混合,可使用濕式或乾式之球磨機、振磨機、珠磨機等。為了獲得均勻且細微之結晶粒及孔隙,最佳為短時間內凝集體之壓碎效率較高,添加物之分散狀態亦成為良好之珠磨機混合法。
利用球磨機之混合時間較佳為設為15小時以上,更佳為19小時以上。其原因在於:若混合時間不足,則有最終獲得之燒結體中生成Ga2O3、MgO等高電阻化合物之虞。
利用珠磨機之粉碎、混合時間根據裝置之大小、處理之漿料量而有所不同,以漿料中之粒度分佈全部在1 μm以下並變得均勻之方式進行適當調整。
又,較佳為混合時僅添加任意量之黏合劑,同時進行混合。黏合劑中可使用聚乙烯醇、乙酸乙烯酯等。
其次,由原料粉末漿料獲得造粒粉。造粒時較佳為進行急速乾燥造粒。作為用以急速乾燥造粒之裝置,現廣泛使用噴霧乾燥機。具體之乾燥條件係根據乾燥漿料之漿料濃度、乾燥中使用之熱風溫度、風量等諸多條件而決定,因此於實施時,需要預先求得最佳條件。
若進行自然乾燥,則沈澱速度根據原料粉末之比重差而有不同,故而有In2O3粉末、Ga2O3粉末、MgO粉末產生分離,不再獲得均勻之造粒粉之虞。若使用該不均勻之造粒粉製作燒結體,則有燒結體內部存在Ga2O3、MgO等,導致濺鍍中之異常放電之情形。
對於造粒粉,通常藉由模具壓製或冷均壓壓製(CIP,cold isostatic pressing),以1.2 ton/cm2以上之壓力實施成形而獲得成形體。 (2)燒結成形體之步驟
可於1200~1650℃之燒結溫度下對所獲得之成形物燒結10~50小時,而獲得燒結體。
燒結溫度較佳為1350~1600℃,更佳為1400~1600℃,進而較佳為1450~1600℃。燒結時間較佳為12~40小時,更佳為13~30小時。
若燒結溫度未達1200℃或燒結時間未達10小時,則有於靶材內部形成Ga2O3、MgO等,而導致異常放電之虞。另一方面,若煅燒溫度超過1650℃,或煅燒時間超過50小時,則有因顯著之結晶粒成長引起平均結晶粒徑之增大、或產生粗大孔隙,而導致燒結體強度之下降或異常放電之虞。
又,藉由將燒結溫度設為1650℃以下,亦可抑制Ga之蒸騰。
作為本發明所使用之燒結方法,除常壓燒結法以外,亦可採用熱壓、氧加圧、熱等靜壓加壓等加壓燒結法。其中,就製造成本之降低、大量生產之可能性、可容易地製造大型燒結體之觀點而言,較佳為採用常壓燒結法。
常壓燒結法係於大氣環境、或氧化氣體環境,較佳為氧化氣體環境中對成形體進行燒結。所謂氧化氣體環境,較佳為氧氣環境。氧氣環境較佳為氧濃度例如為10~100體積%之環境。於上述燒結體之製造方法中,藉由於升溫過程中導入氧氣環境,可進一步提高燒結體密度。
進而,燒結時之升溫速度較佳為設為自800℃至燒結溫度(1200~1650℃)為0.1~2℃/分鐘。
自800℃向上之溫度範圍為燒結最激烈之範圍。若該溫度範圍之升溫速度慢於0.1℃/分鐘,則有結晶粒成長變得顯著,無法實現高密度化之虞。另一方面,若升溫速度快於2℃/分鐘,則有於靶材內部析出Ga2O3、MgO等之虞。
自800℃至燒結溫度之升溫速度較佳為0.1~1.2℃/分鐘,更佳為0.1~0.8℃/分鐘。
為了使上述煅燒步驟中所獲得之燒結體之電阻於整個靶材中均勻化,亦可視需要設置還原步驟。
作為還原方法,例如可列舉利用還原性氣體之方法或利用真空煅燒或惰性氣體之還原等。
於採用利用還原性氣體之還原處理之情形時,可使用氫氣、甲烷、一氧化碳、或該等氣體與氧氣之混合氣體等。
於採用藉由在惰性氣體中之煅燒的還原處理之情形時,可使用氮氣、氬氣、或該等氣體與氧氣之混合氣體等。
還原處理時之溫度通常為100~800℃,較佳為200~800℃。又,還原處理之時間通常為0.01~10小時,較佳為0.05~5小時。
總結以上內容,關於本發明所使用之燒結體之製造方法,例如可藉由向含有氧化銦粉、氧化鎵粉及氧化鎂粉之混合粉的原料粉末中調配水系溶劑,將所獲得之漿料混合12小時以上之後,進行固液分離、乾燥、造粒,繼而將該造粒物放入模框中成形,其後將所獲得之成形物於氧氣環境中,將自800℃至燒結溫度之升溫速度設為0.1~2℃/分鐘,於1200~1650℃下煅燒10~50小時而獲得燒結體。
藉由如上所述控制燒結體之製造步驟之各條件,可獲得滿足原子比In/(In+Ga+Mg)=0.5以上、0.9999以下,且(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下,燒結體密度為6.0 g/cm3以上,包含In2O3所表示之化合物、In(GaMg)O4所表示之化合物、Ga2MgO4所表示之化合物、及/或In2MgO4所表示之化合物的燒結體。
藉由加工上述所獲得之燒結體,可製成本發明之濺鍍靶材。具體而言,藉由將燒結體切割加工為適合安裝於濺鍍裝置上之形狀,可製成濺鍍靶材素材,藉由將該靶材素材接著於背襯板上,可製成濺鍍靶材。
為了將燒結體製成靶材素材,利用例如平面研磨盤將燒結體研磨製成表面粗度Ra為5 μm以下之素材。此處,亦可進而對靶材素材之濺鍍面實施鏡面加工,而使平均表面粗度Ra成為1000埃以下。
鏡面加工(研磨)可使用機械研磨、化學研磨、機械化學研磨(機械研磨與化學研磨之併用)等公知之研磨技術。例如可於利用固定研磨粒拋光機(拋光液:水)拋光為#2000以上,或利用游離研磨粒研磨(研磨材:SiC膏等)進行磨削後,藉由將研磨材換為鑽石膏進行磨削而獲得。此種研磨方法並無特別限制。
靶材素材之表面較佳為利用200~10,000號之金剛石磨輪進行最後加工,尤佳為利用400~5,000號之金剛石磨輪進行最後加工。若使用小於200號,或大於10,000號之金剛石磨輪,則有靶材素材變得容易破裂之虞。
靶材素材之表面粗度Ra較佳為0.5 μm以下,具備無方向性之研磨面。若Ra大於0.5 μm,或研磨面有方向性,則有發生異常放電,或產生微粒之虞。
其次,對所獲得之靶材素材進行清潔處理。清潔處理可使用鼓風或流水清洗。於藉由鼓風除去雜質時,若自噴嘴之對向側利用集塵機進行吸氣,則可更有效地除去。
再者,以上之鼓風或流水清洗存在極限,因而可進而進行超音波清洗等。關於該超音波清洗,有效的是以頻率25~300 KHz之間多重振動而進行之方法。例如較佳為於頻率25~300 KHz之間,以25 KHz為間隔使12種頻率進行多重振動而進行超音波清洗。
靶材素材之厚度通常為2~20 mm,較佳為3~12 mm,尤佳為4~6 mm。
可藉由將依照上述方式獲得之靶材素材焊接於背襯板上,而獲得濺鍍靶材。又,亦可將複數種靶材素材安裝於1塊背襯板上製成實質上為1塊之靶材。 II.氧化物薄膜
本發明之氧化物薄膜之製造方法之特徵在於:使用上述濺鍍靶材並藉由濺鍍法而成膜。
藉由本發明之氧化物薄膜之製造方法所製造之氧化物薄膜包含銦、鎵、鎂、氧,通常原子比為In/(In+Ga+Mg)=0.5以上、0.9999以下,且(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下。
氧化鎵具有減小氧化銦之晶格常數之效果,可期待結晶中之銦彼此之5s軌道之重疊增大,遷移率提高。對於氧化鎂,可期待使氧化物薄膜之載子濃度降低之效果。
若氧化物薄膜之原子比(Ga+Mg)/(In+Ga+Mg)未達0.0001,則有薄膜剛沈積後生成微結晶之情形,而有於後處理加熱步驟中發生2次結晶化之虞。2次結晶化之薄膜不僅遷移率下降而且氧缺陷增加,而有導致載子濃度上升之虞。
使用原子比(Ga+Mg)/(In+Ga+Mg)超過0.5之濺鍍靶材而成膜之氧化物薄膜存在Ga2O3或MgO析出至薄膜中,成為電子之散射原因而導致遷移率降低之虞。
本發明之濺鍍靶材由於具有高導電性,故而可應用成膜速度較快之DC(direct current,直流)濺鍍法。
本發明之濺鍍靶材除了上述DC濺鍍法外,亦可應用RF(radio frequency,射頻)濺鍍法、AC(Alternating Current,交流)濺鍍法、脈衝DC濺鍍法,可實現無異常放電之濺鍍。
氧化物半導體薄膜亦可使用上述燒結體,藉由蒸鍍法、濺鍍法、離子鍍、脈衝雷射蒸鍍法等而製作。
作為濺鍍氣體(環境),可使用氬氣等稀有氣體原子與氧化性氣體之混合氣體。氧化性氣體可列舉O2、CO2、O3、H2O、N2O等。濺鍍氣體較佳為含有稀有氣體原子與選自水分子、氧氣分子及一氧化二氮分子中之一種以上分子的混合氣體,更佳為稀有氣體原子與至少含有水分子之混合氣體。
濺鍍成膜時之氧分壓比較佳為設為0%以上且未達40%。以氧分壓比為40%以上之條件製作之薄膜存在載子濃度大幅度降低而使載子濃度未達1013 cm-3之虞。
較佳為氧分壓比為0~30%,尤佳為2%~15%。
本發明之氧化物薄膜沈積時之濺鍍氣體(環境)中所含之水分子之分壓比,即[H2O]/([H2O]+[稀有氣體]+[其他分子])較佳為0~25%。
又,若水之分壓比超過25%,則有由於膜密度下降變得顯著,故而In之5s軌道之重疊變小而導致遷移率降低之虞。濺鍍時之環境中之水之分壓比更佳為0.1~25%,進而較佳為0.7~13%,尤佳為1~6%。
藉由濺鍍成膜時之基板溫度較佳為25~120℃,進而較佳為25~100℃,尤佳為25~90℃。若成膜時之基板溫度高於120℃,則有薄膜剛沈積後之膜中生成微結晶,加熱結晶化後之薄膜之載子濃度超過1018/cm3之虞。又,若成膜時之基板溫度低於25℃,則有薄膜之膜密度降低,TFT(thin film transistor,薄膜電晶體)之遷移率降低之虞。
較佳為將藉由濺鍍而獲得之氧化物薄膜進而於150~500℃中保持15分鐘~5小時而實施退火處理。更佳為成膜後之退火處理溫度為200℃以上、450℃以下,進而較佳為250℃以上、350℃以下。藉由實施上述退火,可獲得半導體特性。
氧化物半導體薄膜之載子濃度通常為1018/cm3,較佳為1013~1018/cm3,進而較佳為1014~1017/cm3,尤佳為1015~1017/cm3
若氧化物層之載子濃度大於1018 cm-3,則構成薄膜電晶體之元件時會產生洩漏電流。又,有因成為常導通,或開閉比減小,而無法發揮良好之電晶體性能之虞。進而,若載子濃度未達1013 cm-3,則有由於載子數較少故而作為TFT不驅動之虞。
氧化物半導體薄膜之載子濃度可藉由霍耳效應測定方法進行測定。
藉由向氧化銦中共摻雜氧化鎂與氧化鉀,可穩定地將載子濃度控制在1018/cm3以下。
又,加熱時之環境並無特別限定,就載子控制性之觀點而言,較佳為大氣環境、氧氣流通環境。
於氧化物薄膜之後處理退火步驟中,可於氧氣存在下或非存在下使用燈加熱退火裝置、雷射退火裝置、熱電漿裝置、熱風加熱裝置、接觸加熱裝置等。
濺鍍時靶材與基板之間的距離於與基板之成膜面垂直之方向上較佳為1~15 cm,進而較佳為2~8 cm。該距離未達1 cm之情形時,不僅有到達基板之靶材構成元素之粒子之運動能量增大,無法獲得良好之膜特性之虞,而且有產生膜厚及電氣特性之面內分佈之虞。另一方面,於靶材與基板之間隔超過15 cm之情形時,有到達基板之靶材構成元素之粒子之運動能量變得過小,無法獲得緻密之膜,無法獲得良好之半導體特性之虞。
氧化物薄膜之成膜理想的是於磁場強度為300~1500高斯之環境下進行濺鍍。於磁場強度未達300高斯之情形時,有由於電漿密度降低故而於採用高電阻之濺鍍靶材之情形時變得無法濺鍍之虞。另一方面,於超過1500高斯之情形時,有膜厚及膜之電氣特性之控制性變差之虞。
氣體環境之壓力(濺鍍壓力)若為電漿可穩定放電之範圍,則無特別限定,較佳為0.1~3.0 Pa,進而較佳為0.1~1.5 Pa,尤佳為0.1~1.0 Pa。濺鍍壓力超過3.0 Pa之情形,有濺鍍粒子之平均自由行程變短,薄膜之密度降低之虞。又,於濺鍍壓力未達0.1 Pa之情形時,有成膜時膜中生成微結晶之虞。再者,濺鍍壓力係指導入氬等稀有氣體原子、水分子、氧分子等之後之濺鍍開始時之系內之全壓力。 III.薄膜電晶體及顯示裝置
上述氧化物薄膜可用於薄膜電晶體,尤其可適宜地用作通道層。
本發明之薄膜電晶體若含有上述氧化物薄膜作為通道層,則其元件構成並無特別限定,可採用公知之各種元件構成。
本發明之薄膜電晶體中之通道層之膜厚通常為10~300 nm,較佳為20~250 nm,更佳為30~200 nm,進而較佳為35~120 nm,尤佳為40~80 nm。於通道層之膜厚未達10 nm之情形時,有因大面積成膜時之膜厚之不均勻性,而導致所製作之TFT之特性在面內變得不均勻之虞。另一方面,於膜厚超過300 nm之情形時,有成膜時間延長而於工業上無法採用之虞。
本發明之薄膜電晶體中之通道層通常用於N型領域,可利用於P型Si系半導體、P型氧化物半導體、P型有機半導體等各種P型半導體與組合PN接合型電晶體等各種半導體器件。
本發明之薄膜電晶體較佳為於上述通道層上設置保護膜。本發明之薄膜電晶體之保護膜較佳為至少含有SiNx。由於與SiO2相比SiNx可形成緻密之膜,故而有TFT之劣化抑制效果較高之優勢。
保護膜除SiNx以外,例如亦可含有SiO2、Al2O3、Ta2O5、TiO2、MgO、ZrO2、CeO2、K2O、Li2O、Na2O、Rb2O、Sc2O3、Y2O3、HfO2、CaHfO3、PbTi3、BaTa2O6、Sm2O3、SrTiO3或AlN等之氧化物等,較佳為實質上僅含有SiNx。此處,「實質上僅含有SiNx」係指構成本發明之薄膜電晶體之保護層之薄膜之70重量%以上,較佳為80重量%以上,進而較佳為85重量%以上為SiNx
於形成保護膜前,較佳為對通道層實施臭氧處理、氧電漿處理或一氧化二氮電漿處理。此種處理可於形成通道層後,或形成保護膜前之任意時刻進行,較期待在即將形成保護膜之前進行。藉由進行此種前處理,可抑制通道層中之氧缺陷之發生。
又,若於TFT驅動中氧化物半導體膜中之氫發生擴散,則有引起閾值電壓之偏移而導致TFT之可靠性降低之虞。藉由對通道層實施臭氧處理、氧電漿處理或一氧化二氮電漿處理,於結晶構造中In-OH之鍵結獲得穩定化,而可抑制氧化物半導體膜中之氫之擴散。
薄膜電晶體通常具備基板、閘極電極、閘極絕緣層、有機半導體層(通道層)、源極電極及汲極電極。關於通道層,如上所述;關於基板,可使用公知之材料。
對於形成本發明之薄膜電晶體之閘極絕緣膜的材料亦無特別限定,可任意地選擇通常使用之材料。具體而言,例如可使用SiO2、SiNx、Al2O3、Ta2O5、TiO2、MgO、ZrO2、CeO2、K2O、Li2O、Na2O、Rb2O、Sc2O3、Y2O3、HfO2、CaHfO3、PbTi3、BaTa2O6、SrTiO3、Sm2O3、AlN等化合物。該等之中,較佳為SiO2、SiNx、Al2O3、Y2O3、HfO2、CaHfO3,更佳為SiO2、SiNx、Y2O3、HfO2、Al2O3
閘極絕緣膜例如可藉由電漿CVD(Chemical Vapor Deposition,化學氣相沈積)法形成。
於藉由電漿CVD法形成閘極絕緣膜,並於其上形成通道層之情形時,有閘極絕緣膜中之氫向通道層擴散,而導致通道層之膜質下降或TFT之可靠性下降之虞。為了防止通道層之膜質下降或TFT之可靠性下降,較佳為於形成通道層前對閘極絕緣膜實施臭氧處理、氧電漿處理或一氧化二氮電漿處理。藉由進行此種前處理,可防止通道層之膜質之下降或TFT之可靠性下降。
再者,上述氧化物之氧數可不必與化學計量比一致,例如可為SiO2亦可為SiOx
閘極絕緣膜可為積層包含不同材料之2層以上之絕緣膜之構造。又,閘極絕緣膜可為結晶質、多結晶質、非晶質中之任一種,較佳為工業上容易製造之多結晶質或非晶質。
形成本發明之薄膜電晶體中之汲極電極、源極電極及閘極電極之各電極的材料並無特別限定,可任意選擇通常使用之材料。例如可使用ITO、IZO、ZnO、SnO2等之透明電極,或Al、Ag、Cu、Cr、Ni、Mo、Au、Ti、Ta等之金屬電極,或含有該等之合金之金屬電極。
汲極電極、源極電極及閘極電極之各電極可製成積層不同之2層以上之導電層的多層構造。特別是由於源極、汲極電極對低電阻配線之要求強烈,故而可利用Ti或Mo等密接性優異之金屬夾住Al或Cu等良導體而使用。
本發明之薄膜電晶體亦可應用於場效型電晶體、邏輯電路、記憶電路、差動放大電路等各種積體電路。進而,除場效型電晶體以外,亦可應用於靜電感應型電晶體、蕭特基能障型電晶體、蕭特基二極體、電阻元件。
本發明之薄膜電晶體之構成可無限制地採用底閘極、底部接觸、頂部接觸等公知之構成。
尤其是底閘極構成,由於可獲得高於非晶矽或ZnO之薄膜電晶體之性能,故而有利。底閘極構成因容易削減製造時之遮罩數量,易降低大型顯示器等用途之製造成本,故而較佳。
本發明之薄膜電晶體可適宜地用於顯示裝置。
作為大面積之顯示器用途,尤佳為溝道蝕刻型之底閘極構成之薄膜電晶體。溝道蝕刻型之底閘極構成之薄膜電晶體於光微影步驟時之光罩之數量較少,而可以低成本製造顯示器用面板。其中,溝道蝕刻型之底閘極構成及頂部接觸構成之薄膜電晶體由於遷移率等特性良好而容易工業化,故而特佳。 實施例實施例1~13 [燒結體之製造]
使用下述氧化物粉末作為原料粉末。再者,氧化物粉末之平均粒徑係利用雷射繞射式粒度分佈測定裝置SALD-300V(島津製作所製造)進行測定,平均粒徑採用中值粒徑D50。
氧化銦粉:平均粒徑0.98 μm
氧化鎵粉:平均粒徑0.96 μm
氧化鎂:平均粒徑0.98 μm
以成為表1所示之原子比Ga/(In+Ga+Mg)及Mg/(In+Ga+Mg)之方式稱量上述粉末,均勻地微粉碎混合後,添加成形用黏合劑進行造粒。其次,將該原料混合粉均勻地填充至模具中,利用冷壓成形機以140 MPa之壓製壓力進行加壓成形。
將如此獲得之成形體以表1所示之升溫速度(自800℃至燒結溫度)、燒結溫度及燒結時間在燒結爐中燒結,而製造燒結體。升溫過程中設置為氧氣環境,其他為大氣中(環境),降溫速度設為15℃/分鐘。
藉由阿基米德法測定所獲得之燒結體之相對密度。 [燒結體之分析]
對所獲得之燒結體進行ICP-AES分析,確認為表1所示之原子比。
又,利用X射線繞射測定裝置(XRD,X ray diffraction)對所獲得之燒結體調查結晶構造。將實施例1~10所獲得之燒結體之X射線繞射圖表示於圖1~10。
對圖標進行分析,結果例如於實施例1之燒結體中觀測到In2O3與In(GaMg)O4。結晶構造可利用JCPDS(Joint Committee of Powder Diffraction Standards,粉末繞射標準聯合委員會)卡進行確認。
實施例1~13之燒結體中未觀測到成為結球之原因的Ga2O3或MgO。
XRD之測定條件如下。
‧裝置:RIGAKU股份有限公司製造之Ultima-III
‧X射線:Cu-Kα射線(波長1.5406 Å,利用石墨單色器單色化)
‧2θ-θ反射法、連續掃描(1.0°/分鐘)
‧取樣間隔:0.02°
‧狹縫DS、SS:2/3°,RS:0.6 mm
藉由電子探針微量分析器(EPMA,electron probe micro analyser)測定,調查所獲得之燒結體之Ga與Mg之分散,未觀測到5 μm以上之Ga或Mg之聚集體。得知本發明所使用之燒結體於分散性、均勻性方面極為優異。
EPMA之測定條件如下。
‧裝置:日本電子股份有限公司製造之JXA-8200
‧加速電壓:15 kV
‧照射電流:50 nA
‧照射時間(每1點):50 mS [濺鍍靶材之製造]
利用平面研磨盤對實施例1~13所獲得之燒結體之表面進行研磨,利用金剛石切割器切斷側邊,貼合於背襯板上,分別製成各直徑4英吋之濺鍍靶材。 [異常放電之有無之確認]
將所獲得之濺鍍靶材安裝至DC濺鍍裝置上,使用氬氣作為濺鍍氣體,將濺鍍壓設為0.4 Pa,基板溫度設為室溫,於DC輸出400 W進行10 kWh連續濺鍍。將濺鍍中之電壓變化積累於資料記錄器中,確認有無異常放電。將結果示於表1。
再者,上述異常放電之有無係藉由監控電壓變化來檢測異常放電而進行。具體而言,以5分鐘測定時間內產生之電壓變化為濺鍍運行中之穩定電壓之10%以上之情形作為異常放電。特別是濺鍍運行中之穩定電壓在0.1秒內變化±10%之情形時,有發生作為濺鍍放電之異常放電的微弧,元件之良率降低,不適合量產化之虞。 [有無產生結球之確認]
又,使用實施例1~13之濺鍍靶材,使用向氬氣中添加有以分壓比計為3%氫氣之混合氣體作為環境,連續濺鍍30小時,確認有無產生結球。
其結果為,於實施例1~13之濺鍍靶材表面未觀測到結球。
再者,濺鍍條件為濺鍍壓設為0.4 Pa,DC輸出設為100 W,基板溫度設為室溫。氫氣係為了促進結球之產生而添加至環境氣體中。
對於結球,利用立體顯微鏡將濺鍍後之靶材表面之變化放大50倍進行觀察,對視野3 mm2中產生之20 μm以上之結球採用計量數量平均之方法。將產生之結球數示於表1。 比較例1、2
以表1所示之原子比Ga/(In+Ga+Mg)及Mg/(In+Ga+Mg)混合原料粉末,以表1所示之升溫速度(自800℃至燒結溫度)、燒結溫度、燒結時間進行燒結,除此以外,與實施例1~13同樣地製造燒結體及濺鍍靶材,並進行評價。將結果示於表1。
比較例1、2所製造之燒結體於X射線繞射圖中觀測到Ga2O3相。由於Ga2O3相為高電阻相,故而認為是導致產生結球之原因。將比較例1之X射線繞射圖表示於圖11。
又,於比較例1、2之濺鍍靶材中,濺鍍時產生異常放電,靶材表面觀測到結球。
實施例14~18 [氧化物半導體薄膜之製造]
將實施例1~3、11及12中所製作之靶材安裝至磁控濺鍍裝置上,並安裝載玻片(康寧公司製造之#1737)作為基板。藉由DC磁控濺鍍法,於下述條件下,在載玻片上形成膜厚50 nm之氧化物薄膜。
成膜時,以表2所示之分壓比(%)導入氬氣、氧氣及/或水蒸氣。於大氣中、300℃下將成膜之基板加熱1小時,形成氧化物半導體膜。
濺鍍條件如下所述。
基板溫度:25℃
極限壓力:8.5×10-5 Pa
環境氣體:氬氣、氧氣及/或水蒸氣
濺鍍壓力(全壓力):0.4 Pa
輸入電力:DC100 W
S(基板)-T(靶材)距離:70 mm [霍耳效應測定用元件之製造]
霍耳效應測定用元件係使用於玻璃基板上成膜之基板並設置於ResiTest 8300型(東陽技術公司製造),於室溫下評價霍耳效應。將結果示於表2。
又,藉由ICP-AES分析,確認氧化物薄膜中所含之各元素之原子比與濺鍍靶材相同。 [薄膜電晶體之製造]
使用附有膜厚100 nm之熱氧化膜之導電性矽基板作為基板。熱氧化膜作為閘極絕緣膜而發揮作用,導電性矽部作為閘極電極而發揮作用。
於表2所示之條件下,於閘極絕緣膜上濺鍍成膜,製作膜厚50 nm之氧化物薄膜。使用OFPR#800(東京應化工業股份有限公司製造)作為抗蝕劑,並塗佈、預烤(80℃、5分鐘)、曝光。顯影後進行後烘烤(120℃、5分鐘),利用草酸蝕刻,而圖案化為所需形狀。其後,於熱風加熱爐內,於300℃下加熱處理(退火處理)1小時。
其後,藉由剝離法,將Mo(100 nm)藉由濺鍍成膜而成膜,將源極/汲極電極圖案化為所需形狀。進而,作為如表2所示形成保護膜之前階段之處理,對氧化物半導體膜實施一氧化二氮電漿處理。其後,藉由電漿CVD法(PECVD)形成SiNx膜,而製成保護膜。使用氫氟酸打開接觸孔,而製作薄膜電晶體。
針對所製作之薄膜電晶體,評價其場效遷移率(μ)、S值及閾值電壓(Vth)。該等特性值係使用半導體參數分析儀(Keithley Instruments Inc股份有限公司製造之4200SCS),於室溫、遮光環境下(遮蔽箱內)測得。再者,汲極電圧(Vd)設為10 V。將結果示於表2。 比較例3、4
將靶材、濺鍍條件及加熱(退火)處理條件變更為表2所記載者,除此以外,與實施例14~18同樣地製作氧化物半導體薄膜、薄膜評價用元件及薄膜電晶體,並進行評價。將結果示於表2。
如表2所示得知,比較例3、4之元件之場效遷移率未達10 cm2/Vs,與實施例14~18相比大幅度較低。
產業上之可利用性
本發明之薄膜電晶體可用於顯示裝置、特別是大面積之顯示器用途。
上文,對本發明之實施形態及/或實施例進行了若干詳細說明,本領域技術人員可容易地在不實質上脫離本發明之新穎教示及效果的情況下,對該等例示之實施形態及/或實施例施加多種變更。因此,該等多種變更包含於本發明之範圍內。
該說明書中記載之文獻及成為本案之巴黎公約優先權基礎之日本專利申請說明書之內容全部引用至本文中。
圖1係實施例1所獲得之燒結體之X射線繞射圖表。
圖2係實施例2所獲得之燒結體之X射線繞射圖表。
圖3係實施例3所獲得之燒結體之X射線繞射圖表。
圖4係實施例4所獲得之燒結體之X射線繞射圖表。
圖5係實施例5所獲得之燒結體之X射線繞射圖表。
圖6係實施例6所獲得之燒結體之X射線繞射圖表。
圖7係實施例7所獲得之燒結體之X射線繞射圖表。
圖8係實施例8所獲得之燒結體之X射線繞射圖表。
圖9係實施例9所獲得之燒結體之X射線繞射圖表。
圖10係實施例10所獲得之燒結體之X射線繞射圖表。
圖11係比較例1所獲得之燒結體之X射線繞射圖表。
权利要求:
Claims (14)
[1] 一種濺鍍靶材,其包含如下之燒結體:該燒結體含有In、Ga及Mg,含有選自In2O3所表示之化合物、In(GaMg)O4所表示之化合物、Ga2MgO4所表示之化合物、及In2MgO4所表示之化合物中之一種以上之化合物,原子比In/(In+Ga+Mg)=0.5以上、0.9999以下,且原子比(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下。
[2] 如請求項1之濺鍍靶材,其中上述原子比滿足以下:In/(In+Ga+Mg)=超過0.7、且為0.9999以下,且(Ga+Mg)/(In+Ga+Mg)=0.0001以上、未達0.3。
[3] 如請求項1之濺鍍靶材,其中上述燒結體之相對密度為90%以上。
[4] 如請求項1之濺鍍靶材,其中上述燒結體進而含有正4價之金屬氧化物M。
[5] 如請求項4之濺鍍靶材,其中上述金屬氧化物M係選自SnO2、TiO2、SiO2、ZrO2、GeO2、HfO2、及CeO2中之一種以上之氧化物。
[6] 如請求項5之濺鍍靶材,其滿足以下之原子比:[M]/[全部金屬]=0.0001~0.20(式中,[M]為燒結體中所含之正4價金屬之原子之合計,[全部金屬]為燒結體中所含之全部金屬之原子之合計)。
[7] 一種濺鍍靶材之製造方法,其係請求項1之濺鍍靶材之製造方法,包括:將平均粒徑為0.1~1.2 μm之氧化銦粉末、平均粒徑為0.1~1.2 μm之氧化鎵粉末、平均粒徑為0.1~1.2 μm之氧化鎂粉末以原子比In/(In+Ga+Mg)=0.5以上、0.9999以下,且原子比(Ga+Mg)/(In+Ga+Mg)=0.0001以上、0.5以下混合、成形,將所獲得之成形體以升溫速度0.1~2℃/分鐘自800℃升溫至燒結溫度,並於上述燒結溫度下保持10~50小時而進行燒結;並且上述燒結溫度在1200℃~1650℃之範圍內。
[8] 一種氧化物薄膜之製造方法,其係使用如請求項1至6中任一項之濺鍍靶材並藉由濺鍍法而成膜。
[9] 如請求項8之氧化物薄膜之製造方法,其係於使稀有氣體原子含有選自水分子、氧分子及一氧化二氮分子中之至少一種以上之分子而成的混合氣體之環境下進行藉由上述濺鍍法之成膜。
[10] 如請求項9之氧化物薄膜之製造方法,其係於稀有氣體原子及至少含有水分子之混合氣體之環境下進行藉由上述濺鍍法之成膜。
[11] 如請求項10之氧化物薄膜之製造方法,其中上述混合氣體中之水分子之含有比率以分壓比計為0.1%~25%。
[12] 一種薄膜電晶體,其係以藉由如請求項8至11中任一項之方法而成膜之氧化物薄膜作為通道層。
[13] 如請求項12之薄膜電晶體,其中於上述通道層上具備至少含有SiNx之保護膜。
[14] 一種顯示裝置,其具有如請求項12或13之薄膜電晶體。
类似技术:
公开号 | 公开日 | 专利标题
JP6314198B2|2018-04-18|複合酸化物焼結体及びそれからなるスパッタリングターゲット
TWI546400B|2016-08-21|Sputtering target
JP5894015B2|2016-03-23|複合酸化物焼結体及びそれからなるスパッタリングターゲット
TWI567045B|2017-01-21|Sputtering target
WO2014073210A1|2014-05-15|スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
TWI636959B|2018-10-01|Sputtering target, oxide semiconductor film, and the like
TWI496758B|2015-08-21|In-Ga-O-based oxide sintered body, target material, oxide semiconductor thin film, and the like
JP5762204B2|2015-08-12|スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
TWI619825B|2018-04-01|Sputter target, oxide semiconductor film and method of manufacturing same
TWI585227B|2017-06-01|A sputtering target, an oxide semiconductor thin film, and the like
TW201435120A|2014-09-16|濺鍍靶、氧化物半導體薄膜及彼等之製造方法
JP2013127118A|2013-06-27|スパッタリングターゲット
TWI607104B|2017-12-01|Sputtering target, oxide semiconductor film and their manufacturing method
TWI620826B|2018-04-11|Sputter target
TWI591197B|2017-07-11|Sputtering target
TW201414861A|2014-04-16|濺鍍靶材
同族专利:
公开号 | 公开日
US20140145185A1|2014-05-29|
KR20140041675A|2014-04-04|
CN103620084A|2014-03-05|
TWI546400B|2016-08-21|
JPWO2013005400A1|2015-02-23|
CN103620084B|2016-03-02|
WO2013005400A1|2013-01-10|
JP5990167B2|2016-09-07|
US9039944B2|2015-05-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
TWI555042B|2015-08-03|2016-10-21|光洋應用材料科技股份有限公司|鈷鐵基軟磁靶材及鈷鐵基軟磁材料|
TWI557758B|2015-07-29|2016-11-11|光洋應用材料科技股份有限公司|鐵鈷基軟磁靶材及鐵鈷基軟磁材料|
TWI613176B|2014-05-23|2018-02-01|住友金屬礦山股份有限公司|氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜|JPH07315930A|1994-05-26|1995-12-05|Denki Kagaku Kogyo Kk|MgIn2O4系焼結体の製造方法|
JPH07330431A|1994-06-08|1995-12-19|Denki Kagaku Kogyo Kk|MgIn2O4系焼結体の製造方法|
JP3947575B2|1994-06-10|2007-07-25|Hoya株式会社|導電性酸化物およびそれを用いた電極|
JPH08264022A|1995-03-27|1996-10-11|Gunze Ltd|透明導電膜|
KR100744017B1|2001-06-26|2007-07-30|미츠이 긴조쿠 고교 가부시키가이샤|고저항 투명 도전막용 스퍼터링 타겟 및 고저항 투명도전막의 제조방법|
JP4424889B2|2001-06-26|2010-03-03|三井金属鉱業株式会社|高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法|
JP2004149883A|2002-10-31|2004-05-27|Mitsui Mining & Smelting Co Ltd|高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法|
EP2413366B1|2004-03-12|2017-01-11|Japan Science And Technology Agency|A switching element of LCDs or organic EL displays|
JP4488184B2|2004-04-21|2010-06-23|出光興産株式会社|酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜|
JP5058469B2|2005-09-06|2012-10-24|キヤノン株式会社|スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法|
TWI478347B|2007-02-09|2015-03-21|Idemitsu Kosan Co|A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device|
US9249032B2|2007-05-07|2016-02-02|Idemitsu Kosan Co., Ltd.|Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element|
JP5242083B2|2007-06-13|2013-07-24|出光興産株式会社|結晶酸化物半導体、及びそれを用いてなる薄膜トランジスタ|
KR101596211B1|2007-07-06|2016-02-22|스미토모 긴조쿠 고잔 가부시키가이샤|산화물 소결물체와 그 제조 방법, 타겟, 및 그것을 이용해 얻어지는 투명 도전막 및 투명 도전성 기재|
US8148245B2|2007-12-27|2012-04-03|Jx Nippon Mining & Metals Corporation|Method for producing a-IGZO oxide thin film|
JP2010070409A|2008-09-17|2010-04-02|Idemitsu Kosan Co Ltd|酸化物焼結体の製造方法|
CN102216237B|2008-11-20|2015-05-13|出光兴产株式会社|ZnO-SnO2-In2O3类氧化物烧结体及非晶质透明导电膜|
JP5640478B2|2009-07-09|2014-12-17|株式会社リコー|電界効果型トランジスタの製造方法及び電界効果型トランジスタ|WO2014073387A1|2012-11-07|2014-05-15|日本碍子株式会社|セラミックス材料及びスパッタリングターゲット部材|
JP6279482B2|2012-11-07|2018-02-14|日本碍子株式会社|スパッタリングターゲット部材|
US9012261B2|2013-03-13|2015-04-21|Intermolecular, Inc.|High productivity combinatorial screening for stable metal oxide TFTs|
JP6064895B2|2013-12-27|2017-01-25|住友金属鉱山株式会社|酸化インジウム系酸化物焼結体およびその製造方法|
KR101788929B1|2015-09-25|2017-11-15|아주대학교산학협력단|금속산화물 박막의 전기 전도도 향상 방법 및 이에 의해 전도도가 조절된 금속산화물 박막을 포함하는 박막트랜지스터|
法律状态:
2019-05-21| MM4A| Annulment or lapse of patent due to non-payment of fees|
优先权:
申请号 | 申请日 | 专利标题
JP2011150317||2011-07-06||
[返回顶部]